Diagnosis of Device Thrombosis

Andrew Civitello MD, FACC
Medical Director, Heart Transplant Program
Director, Advanced Heart Failure Fellowship
Co-Director, Advanced Heart Failure Center of Excellence
Baylor St. Luke’s Medical Center / Texas Heart Institute
Trends in Patient Profiles, LVAD Volumes and Management Strategies

Secular Trends

Implant Year

- 2008
- 2009
- 2010
- 2011
- 2012
- 2013

FDA approves HMII for BTT

FDA approves HMII for DT

INTERMACS Profile 1/2 (%)

Destination Therapy (%)

LVAD volume Trend (n)

Cumulative LVADs Implanted

0
2,000
4,000
6,000
8,000
10,000

GI bleeding and vWF deficiency
Low reported thromboembolic events
Relaxed anticoagulation targets
Reduced emphasis on post-op bridging
Aortic valve pathology emerges
Lower pump speed for AV opening

Spike in HeartMate II Thrombosis

Adapted from Mehra et al, J Heart Lung Transplant 2014;33:1-11
Definition of Pump Thrombosis

- Development of clot within the flow path of any the pump components:
 - Inflow cannula
 - Pump housing / rotor
 - Outflow graft

- Thrombus may originate in the pump, or
 - from the left atrium or ventricle, or
 - from right sided chambers and travel through a septal defect
- And lodge in any, or all, of the pump components
LVAD Thrombosis

Inflow Cannula

Rotor

Outflow Cannula
Diagnosis of Pump Thrombosis May be Elusive

- echo
- CTA
- cardiac catheterization
- VADoscopy
- direct examination intraoperatively

Algorithm for the Diagnosis of Suspected LVAD Thrombosis

1. **Power Elevations**
 - Early or Late?
 - Early
 - Consider Echocardiogram +/- Speed Changes
 - Late
 - LV Unloading?
 - Yes
 - Close Follow-up
Diagnosis of VAD Thrombosis - 2018

Clinical Suspicion of VAD Thrombosis (At least one of the following):
- Signs of Symptoms Suggestive of VAD thrombosis
- Evidence of hemolysis
- Change in pump parameters

- **Check LDH**
 - Normal
 - >3X Upper Normal Limit
 - Admit to Hospital
 - Consider intravenous anticoagulation
 - Assess other causes of HF or change in pump parameters

Adapted from Rame and Birati, J Am Coll Cardiol HF 2015;3 (11); 857-858
The Relationship Between Hemolysis and VAD Thrombosis

Thrombus Formation
- Hemolysis, but No Hemodynamic Compromise

Incomplete Thrombosis
- Hemolysis, with Abnormal Pump Function

Complete Thrombosis
- Pump Stop With Cardiogenic Shock

Elevated LDH Levels Within 3 Months After HM II Implantation

LDH and Serum Free Hb as Markers of Device Thrombosis

Shah et al, J Heart and Lung Transplant 2014;33;102-104
Diagnosis of VAD Thrombosis - 2018

Clinical Suspicion of VAD Thrombosis (At least one of the following):
- Signs of Symptoms Suggestive of VAD thrombosis
- Evidence of hemolysis
- Change in pump parameters

Check LDH

- Normal: Assess other causes of HF or change in pump parameters
- >3X Upper Normal Limit: Admit to Hospital, Consider intravenous anticoagulation

Hemodynamically Stable?

- Yes: HM II
 - Diagnosis: **Echo Ramp study**
 - Higher peak power
 - Consider CT angio
 - Consider RHC
 - HVAD
- No: Consider Pump Exchange or OHT
Echocardiography for Device Thrombosis

Increased LV size by LVIDd after LVAD thrombosis

Echocardiography Ramp Test - Diagnosis of Device Thrombosis

Increased AV Opening Time by M-mode

Echocardiography Ramp Test - Diagnosis of Device Thrombosis

Low Velocity Inflow Cannula Peak velocity

Echocardiography Ramp Test - Diagnosis of Device Thrombosis

Abnormal Inflow Cannula Colorflow

Development of a Novel Echocardiography Ramp Test for Speed Optimization and Diagnosis of Device Thrombosis in Continuous-Flow Left Ventricular Assist Devices

The Columbia Ramp Study

Nir Uriel, MD,* Kerry A. Morrison, BA,* Arthur R. Garan, MD,* Tomoko S. Kato, MD,* Melana Yuzefpolskaya, MD,* Farhana Latif, MD,* Susan W. Restaino, MD,* Donna M. Mancini, MD,* Margaret Flannery, NP,† Hiroo Takayama, MD,† Ranjit John, MD,‡ Paolo C. Colombo, MD,* Yoshifumi Naka, MD, PhD,† Ulrich P. Jorde, MD*

New York, New York; and Minneapolis, Minnesota
Normal vs Device Thrombosis RAMP Echo Study

Uriel et al, J Am Coll Cardiol 2012;60:1764-75
Ramp Echo Study - Normal vs Device Thrombosis

| Table 2: Baseline Characteristics and Results: Device Thrombosis Patients (n = 8) Versus No Thrombosis Patients (n = 29) Versus All Patients (n = 39) |
|-----------------|-----------------|-----------------|-----------------|
| | Confirmed Thrombosis Patients (n = 8) | No Thrombosis Patients (n = 29) | p Value | All Patients (n = 39*) |
| Age, yrs | 53 ± 20 | 59 ± 14 | 0.47 | 57 ± 14 |
| Male | 5 (62) | 26 (90) | 0.10 | 33 (85) |
| Race | 2 (25) AA, 6 (75) other | 3 (12) AA, 22 (88) other | 1.0 | 6 (15) AA, 33 (85) other |
| Heart failure etiology, dilated cardiomyopathy | 4 (50) | 12 (48) | 0.70 | 20 (51) |
| Hypertension | 3 (38) | 7 (28) | 1.0 | 13 (33) |
| Diabetes mellitus | 3 (38) | 7 (28) | 0.66 | 14 (36) |
| Former smoker | 5 (62) | 14 (56) | 0.70 | 21 (54) |
| IVS, cm | 1.0 ± 0.2 | 1.1 ± 0.2 | 0.06 | 21 (54) |
| LVAD surgery combined with | | | | |
| Mitral valve repair | 1 (13) | 7 (28) | 0.65 | 9 (23) |
| AV repair/closure | 0 (0) | 7 (28) | 0.16 | 8 (21) |
| Tricuspid valve repair | 1 (13) | 2 (8) | 1.0 | 4 (10) |
| PFO closure | 1 (13) | — | 0.24 | 1 (3) |
| Ramp test results | | | | |
| LVEDD slope | −0.08 ± 0.04 | −0.29 ± 0.11 | <0.001 | N/A |
| PI slope | −0.16 ± 0.04 | −0.46 ± 0.20 | <0.001 | N/A |
| Power slope | 0.74 ± 0.15 | 0.62 ± 0.17 | 0.03 | N/A |
| Speed for complete AV closure | 11,100 ± 1,146 | 9,124 ± 1,222 | <0.001 | N/A |
| LDH value | 1,737 ± 684 | 454 ± 263 | <0.001 | N/A |
| Low haptoglobin | <7 | N/A | N/A | N/A |
| High plasma-free hemoglobin | 19.1 ± 14.0 | N/A | N/A | N/A |
| Length of follow-up, post-ramp test, days | 171 ± 111 | 148 ± 89 | 0.6 | N/A |

Uriel et al, J Am Coll Cardiol 2012;60:1764-75
Ramp Echo Study - Normal vs. Device Thrombosis

No patient with VAD Thrombosis had a LVEDD Slope <- 0.16

Best LDH Cutoff >1103 (5X ULM)

Uriel et al, J Am Coll Cardiol 2012;60:1764-75
Using RAMP Echo Studies to Predict VAD Thrombosis

Suspected Device Malfunction
LDH Elevation, Power Spikes

Check for Hemolysis: LDH, Plasma Free Hemoglobin
Check Anticoagulation: INR, PTT

LVEDD Slope > -0.16
Device Thrombosis is Likely

LVEDD Slope < -0.16
No Device Thrombosis or Malfunction

Adapted from Uriel et al, J Am Coll Cardiol:60;1764-75
Diagnosis of VAD Thrombosis - 2018

Clinical Suspicion of VAD Thrombosis (At least one of the following):
- Signs of Symptoms Suggestive of VAD thrombosis
- Evidence of hemolysis
- Change in pump parameters

Check LDH

Assess other causes of HF or change in pump parameters

>2.5X Upper Normal Limit

Admit to Hospital
Consider intravenous anticoagulation

Consider Pump Exchange or OHT

Hemodynamically Stable?

Yes

HVAD

No

HM II

Diagnosis:
- Echo Ramp study
- Higher peak power
- Consider CT angio
- Consider RHC

Adapted from Rame and Birati, J Am Coll Cardiol HF 2015;3 (11); 857-858
Computed Tomography Angiography (CTA)

• Helpful in diagnosing mechanical issues predisposing to pump thrombosis

• Important positive findings include:
 - Left ventricular thrombus
 - Dilated left ventricle
 - Cannula malposition toward any of the left ventricular walls
 - Outflow graft thrombus, kinking or twisting
 - Lack of opacification of the outflow graft
Computed Tomography Angiography (CTA)

Misdirection of the apical cannula toward the interventricular septum

Milano et al, J Heart Lung Transplant 2011;30:838–40
Computed Tomography Angiography (CTA)

Mural thrombus in the proximal LVAD outflow cannula

Krishnan et al, J Cardiovasc Comp Tomography 2014;8:473-474
Diagnosis of VAD Thrombosis - 2018

Clinical Suspicion of VAD Thrombosis (At least one of the following):
- Signs of Symptoms Suggestive of VAD thrombosis
- Evidence of hemolysis
- Change in pump parameters

- Check LDH
 - Normal
 - >3X Upper Normal Limit

 - Admit to Hospital
 - Consider intravenous anticoagulation

Hemodynamically Stable?

- Yes
 - Diagnosis:
 - Log file analysis
 - Higher peak power
 - Consider CT angio
 - Consider RHC

- No
 - Consider Pump Exchange or OHT

HM II

- Diagnosis:
 - Echo Ramp study
 - Higher peak power
 - Consider CT angio
 - Consider RHC

HVAD

- Diagnosis:
 - Log file analysis
 - Higher peak power
 - Consider CT angio
 - Consider RHC

Adapted from Rame and Birati, *J Am Coll Cardiol HF* 2015;3 (11); 857-858
RAMP Echo Slope Does Not Diagnosis HVAD Thrombosis

Uriel et al, J Cardiac Fail 2015;21;785-791
HVAD Log File Analysis to Diagnosis Thrombosis

Najjar et al, J Heart Lung Transplant 2014;33:23–34
HVAD Log File Analysis to Diagnosis Thrombosis

Najjar et al, J Heart Lung Transplant 2014;33:23–34
Diagnosis of VAD Thrombosis - 2018

Clinical Suspicion of VAD Thrombosis (At least one of the following):
- Signs of Symptoms Suggestive of VAD thrombosis
- Evidence of hemolysis
- Change in pump parameters

Check LDH

- Normal
 - Assess other causes of HF or change in pump parameters
- >3X Upper Normal Limit
 - Admit to Hospital
 - Consider intravenous anticoagulation

Hemodynamically Stable?

- No
 - Consider Pump Exchange or OHT
- Yes
 - Consider HM II
 - Diagnosis:
 - Echo Ramp study
 - Increased peak power
 - Consider CT angio
 - Consider RHC
 - Consider HVAD
 - Diagnosis:
 - Log file analysis
 - Consider CT angio
 - Consider RHC

Adapted from Rame and Birati, J Am Coll Cardiol HF 2015;3 (11); 857-858