Anastomotic Complications after Esophagectomy

Bryan Meyers, MD MPH
Thoracic Surgery
Washington University School of Medicine
Use of Stomach as Conduit

- Simplest choice after esophagectomy
- Single anastomosis
- Apparently redundant blood supply
- Reaches into the neck if needed
EG Anastomosis Complications

- Stenosis requiring dilation
- Leak
- Gastric tip necrosis
- Late functional problems
What are Current Anastomotic Leak Rates? Do we really need to keep talking about this?

<table>
<thead>
<tr>
<th>Variables</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of operative mortality</td>
<td>135 (3.1%)</td>
</tr>
<tr>
<td>Frequency of major complications</td>
<td>1,429 (33.1%)</td>
</tr>
<tr>
<td>Unexpected return to operating room</td>
<td>674 (15.6%)</td>
</tr>
<tr>
<td>Anastomosis requiring medical or surgical treatment</td>
<td>519 (12.0%)</td>
</tr>
<tr>
<td>Reintubation</td>
<td>528 (12.2%)</td>
</tr>
<tr>
<td>Initial ventilator support > 48 hours</td>
<td>150 (3.5%)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>529 (12.2%)</td>
</tr>
<tr>
<td>Renal failure</td>
<td>85 (2.0%)</td>
</tr>
<tr>
<td>Recurrent laryngeal nerve paresis</td>
<td>89 (2.1%)</td>
</tr>
</tbody>
</table>
Frequency of Ischemic Complications

- Routine endoscopy after esophagectomy and reconstruction
- “blue to black discoloration of the mucosa, adherence of a green or silver-metallic mucus to the mucosa that could not be removed by irrigation, or a clearly demarcated nonedematous mucosa with ulceration.”
- Prevalance was 9.2% of nearly 400 patients

To Staple or Sew? Does it Matter?

Comparison of outcomes following end-to-end hand-sewn and mechanical oesophagogastric anastomosis after oesophagectomy for carcinoma: a prospective randomized controlled trial

Quan-Xing Liu, Yuan Qiu, Xu-Feng Deng, Jia-Xin Min and Ji-Gang Dai

Department of Thoracic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China

Corresponding author. Department of Thoracic Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, PR China. Tel: +86-236-8774724; fax: +86-236-8774724; e-mail: 691057831@qq.com (J. Dai).

Received 1 August 2014; received in revised form 29 October 2014; accepted 4 November 2014
Results

<table>
<thead>
<tr>
<th></th>
<th>Hand-sewn (n=232)</th>
<th>Stapled (n=235)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative time</td>
<td>226 ± 21</td>
<td>193 ± 16</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Anastomotic Leaks</td>
<td>17 (7.3)</td>
<td>7 (3.0)</td>
<td>0.033</td>
</tr>
<tr>
<td>Anastomotic Strictures</td>
<td>16 (7.5)</td>
<td>31 (14.2)</td>
<td>0.027</td>
</tr>
</tbody>
</table>
MIE vs. Open: Impact on leaks

Result:
No impact of MIE vs open on leaks
Odds ratio 0.97

"Staple Line on Staple Line" EG
Anastomosis: A Novel Technique

Mankins, Kesler

https://doi.org/10.25373/ctsnet.5280259
The Specific Problem: Gastric Tip Necrosis

• Results in mediastinitis and empyema
• Requires at least 2 additional operations if managed successfully
• Much higher mortality associated with development of this complication
Local Experience: Conduit Ischemia

• 484 patients treated @ WUSM with esophagectomy from 1997-2007
• 17 described as “gastric tip necrosis”
• Hospital mortality 4/17
• Median hospital stay 35 days
• Median delay to repair: 7 days
• All surgeons represented in proportion to esophagectomy volume
Surrogate Measures of Ischemia
Can we quantify “looks dusky”?

- Direct oximetry of the stomach
- Clark electrode
- Laser Doppler flowmetry
- Tonometry (intramucosal pH)
- H2 gas clearance
- Thermal scanning
- Near Infrared Spectroscopy (NIRS)
- Indocyananine Green (SPY system)
Results of Surrogate Measures

- Demonstrate reproducible decreases in blood flow at various stages of mobilization and transposition
- Imperfect ability to predict leaks or ischemia
- Some ability to demonstrate relative impact of techniques and physiology of patient on stomach perfusion
Factors Influencing Gastric Blood Flow

- Intrinsic blood supply to the stomach.
- Compression of the gastric tube just distal to the anastomosis. (e.g.: azygous)
- Narrow tubularization of the gastric conduit.
- Degree of trauma or struggle with mobilization or transposition of the tube.
- Systemic hypotension.
- Venous congestion or kinking of venous drainage
Possible Practical Solutions Invoked for “Prevention”

• Maintain ideal blood flow via optimization of BP through volume administration
• Dopamine? Neosynephrine?
• Avoid epidural induced hypotension
• Handle the gastric tube gently
• Make a wider gastric tube
• Leave right gastric & left gastric artery intact
• Avoid gastric distention
• Avoid PEEP
Less Practical, but Novel Solutions

• **Surgical Ischemic Preconditioning**
 – Various degrees of starting the mobilization of the stomach in advance of resection
 – Perhaps paired with node assessment

• **Non-surgical Ischemic Preconditioning**
 – Interventional radiology procedure
 – Injection of microspheres into LGA

• **Delay of anastomosis when “subjective” ischemia is detected**
Gastric Preconditioning

- A, Divided omentum preserving the right gastroepiploic.
- B, Left gastroepiploic artery cut.
- C, Kocher maneuver.
- D, Common hepatic and splenic artery cleared.
- E, Left gastric artery and vein cut.
- F, 60-mm endostapling between the distal and middle third of the lesser curvature.
- G, Introduction site of the circular stapler in the chest.
- H, Future esophagogastrostomy.
- I, Linear stapling for completion of the conduit in the chest.

Ann Surg. 2007 February; 245(2): 241
Summary

• Huge topic, hard to capture in 10 minutes
• Careful handling and meticulous technique will improve outcomes
• Gastric conduit ischemia is always present to varying degrees
• Be nimble and open to minor alterations in technique