Current Management of Postpneumonectomy Bronchopleural Fistula

Shaf Keshavjee MD MSc FRCSC FACS

Surgeon-in-Chief, University Health Network
James Wallace McCutcheon Chair in Surgery
Professor, Division of Thoracic Surgery and Institute of Biomaterials and Biomedical Engineering,
Vice Chair for Innovation, Department of Surgery
University of Toronto

AATS Focus on Thoracic Surgery
October 27th, 2017
Conflict of Interest

• None
How do you manage this?
Overview

1. BPF overview
2. Prevention
3. Acute issues and initial management
4. Surgical management
 - Clagett vs Weder approach
 - Open window thoracostomy
 - Stump management
 - Thoracoplasty
5. Endoscopic management
6. A management algorithm
• **Definition:** a communication between bronchus and pleural space

• **Incidence:**
 - 0.9 – 6% post-pneumonectomies
 - 10% completion pneumonectomies

• **Risk factors**
 - Right side
 - Long stumps
 - Radiotherapy
 - Diabetes
 - Tumor-positive margins
 - Prolonged mechanical ventilation

• **Mortality 20 – 71%**
 - Sepsis
 - Aspiration pneumonia, ARDS, malnutrition

• **Timing**
 - Early BPF < POD 30 < Late BPF
 - More aggressive strategies are needed in early BPF
Presentation can vary…

- Fever
- Elevated WBC
- Drop in air-fluid level in pneumonectomy space
- Increased subcutaneous emphysema
- Cough
- Coughing up bloody fluid
- Acute respiratory failure
- General malaise – loss of appetite, feeling “unwell”
- Pneumopericardium – CXR or CT
- Fistula demonstrated on CT – radiologic call
Prevention

Special attention if:
- Neoadjuvant therapy
- Right side

1. Short bronchial stump
2. Gentle manipulation of airway, avoid devascularization
3. Routine bronchial reinforcement
 - Pericardial fat pad – always
 - Intercostal muscle
 - Serratus or diaphragm muscle flap, pericardial or azygous flap
 - Omental flap (routine in post radiation)
4. Secure closure of thoracotomy
 - which comes first: empyema vs. BPF
Acute issues & initial management

1. Chest tube drainage
 - Tension pneumothorax, manage sepsis
 - Position of patient: drowning via fistula as you place chest tube!
 - Microbiology samples

2. Nursing - operative side down – prevent further soiling of lung

3. IV broad-spectrum antibiotics
 - adapt depending on cultures

4. Bronchoscopy
 - assess magnitude of the fistula
Surgical Management

Aims:

1. Empyema drainage
2. Pleural cavity debridement & decortication
3. Bronchial stump debridement & closure
4. Packing
5. Obliteration of the cavity
Clagett Procedure

Steps
1. Creation of an open window thoracostomy
2. Debridement, curettage and irrigation
3. Pack the cavity with povidone-iodine soaked dressings
4. *Repeat until macroscopically clean: weeks to months*
5. Fill with antibiotic solution and close
6. Delayed definitive closure of the chest

Technical aspects of Open Window Thoracostomy
- H or U shaped incisions, Eloesser flap
- In the most dependent portion of the infected space
- Incision placement to preserve musculocutaneous flaps
- Marsupialization of skin to pleura
Open window thoracostomies

U-shape

dependent portion of infected space

Two ribs removed

Skin flap

Inverted U-shape

Eloesser flap

Skin flap sutured to parietal pleura

→ marsupialization

Adapted from Sugarbaker, Adult Chest Surgery, 2nd ed.
Weder accelerated approach to Early Empyema / BPF

Steps

1. Use the initial thoracotomy
2. Aggressive mechanical debridement
3. Packing with antiseptic soaked dressings
4. Temporary closure with chest tube
5. Suction with negative-pressure (? vacuum therapy, -75mmHg)
6. Repeat 2-3 times q 48h over an 8-day period
7. When “clean” - fill with antibiotic solution and close

Adapted from Kuzdzal, ESTS Textbook of Thoracic Surgery.
Managing the bronchial stump

1. Stump shortening if possible

2. Primary closure
 - Hand-sewn
 - Stapler closure if technically possible, early revision

3. Flap-assisted closure
 - Local muscle flap: intercostal transposition
 - Distant muscle flap: Lat dorsi, Pec major, Rect abdominis, Serratus
 - Omental flap
 - Pericardial or azygos vein flap
Managing the bronchial stump

4. **Trans-sternal trans-pericardial approach**
 - No prior cardiac surgery
 - No major mediastinal shift

5. **Sleeve resection of carina**
 - Short or open stumps

6. **Right sided approach of a left stump**

7. **Combined approaches**
 - Abruzzini technique (Cervical mediastinoscopy, R ant. mediastinotomy, parasternal thoracoscopic port)

Adapted from Kuzdzal, ESTS Textbook of Thoracic Surgery.
Flaps for bronchial reinforcement / closure

Local intercostal flap

Distant flaps

Omental Flap

- Technically easy
- Most reliable for difficult healing situations
 - Infection
 - Post radiation
 - Compromised vascularity of airway
 - Residual space issues
Thoracoplasty / Thoracomyoplasty

Ultimate surgical option to obliterate the empyema cavity

- Removing ribs allows collapse of intercostal muscles and cavity closure.
- Additional myoplasties may help control residual volumes.
Endoscopic management

Adjunct to bronchial stump management

- If fistula size < 5-8mm
- Patient unfit for surgery

- Fibrin glue sealing

- Tracheobronchial stents
 - In patients requiring MV
Algorithm for Management of Postpneumonectomy BPF

Preventive measures

Empyema + BPF

Chest drainage + IV ABs

Early BPF

Selected

Endo

Stump repair + Weder

Clagett Window

Late BPF

Unfit and small

Unfit and large

Fit

Endo

Stump repair + Weder

Clagett Window

Thoracoplasty

Initial

Rescue
Management of Postpneumonectomy BPF: Take home messages

• Post pneumonectomy BPF is a life threatening situation that requires urgent management

• Use preventive strategies in all pneumonectomies, but especially in high-risk patients

• Initial management: chest tube and antibiotics to manage acute situation

• Diagnosis- clinical, bronchoscopy, CT scan

• Clagett and Weder are the main procedures to manage acutely – control sepsis, achieve cavity sterilization and ultimate closure

• Fistula closure techniques depend on timing and case specific considerations

• Weder procedure is preferred – more expeditious management, less morbidity and cost, better for the patient